Investigation of the effects of graded models on the biomechanical behavior of a bone-dental implant system under osteoporotic conditions

نویسندگان

  • Ying Li
  • Zhong Shuang Liu
  • Xiao Ming Bai
  • Bin Zhang
چکیده

OBJECTIVE To investigate the effects of graded models on the biomechanical behavior of a bone-implant system under osteoporotic conditions. Methodology : A finite element model (FEM) of the jawbone segments with a titanium implant is used. Two types of models (a graded model and a non-graded model) are established. The graded model is established based on the graded variation of the elastic modulus of the cortical bone and the non-graded model is defined by homogeneous cortical bone. The vertical and oblique loads are adopted. The max von Mises stresses and the max displacements of the cortical bone are evaluated. RESULTS Comparing the two types of models, the difference in the maximum von Mises stresses of the cortical bone is more than 20%. The values of the maximum displacements in the graded models are considerably less than in the non-graded models. CONCLUSIONS These results indicate the significance of taking into account the actual graded properties of the cortical bone so that the biomechanical behavior of the bone-implant system can be analyzed accurately.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه بیومکانیکی ایمپلنت دندانی تیتانیوم خالص با زیرکونیوم -5/2% نایوبیوم پس از کاشت به روش اجزای محدود

Background and Aims: Improving dental implantation conditions in order to reduce the failure is always desirable for researchers. The aim of this study was to compare two different materials of dental implants from the viewpoint of biomechanical effect after placement and loading in the mandible. Materials and Methods: A 3D model of mandible was designed in the MIMICS 10.01 software. Then,...

متن کامل

Evaluating the impact of length and thread pitch on the stress distribution in dental implants and surrounding bone using finite element method

 longevity of osseointegrated implants are intensely influenced by biomechanical factors. Control of these factors prevents mechanical complications, which include fracture of screws, components, or materials veneering the framework. In this study, the impact of length and threads pitch of dental implants on the stress distribution and maximum Von Mises stress in implant-abutment complex and ja...

متن کامل

Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis

This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...

متن کامل

Effect of Abutment Height Difference on Stress Distribution in Mandibular Overdentures: A Three-Dimensional Finite Element Analysis

Background and Aim: Implant-supported overdentures are a treatment option for edentulous patients. One of the important factors in determining the prognosis of overdenture treatment is to control the distribution of stress in the implant-bone and attachment complex. This study assessed the effect of implant abutment height difference on stress distribution in mandibular overdentures. Materials...

متن کامل

Comparison of Implant Stability in Sinus Lift Surgery Using Autogenous Versus Allogeneic Bone Grafts

Background and aim: The most common method of increasing implant stability in the posterior maxilla comprises the reinforcement of bone height using bone grafts in sinus lift surgery. The purpose of the present study was to compare autogenous and allogeneic bone grafts in implant stability after open sinus lift surgery. Materials and methods: This split-mouth clinical trial compared the implant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2013